首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   13篇
  国内免费   5篇
测绘学   3篇
大气科学   4篇
地球物理   31篇
地质学   52篇
海洋学   4篇
天文学   4篇
综合类   3篇
自然地理   4篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   10篇
  2019年   7篇
  2018年   12篇
  2017年   13篇
  2016年   12篇
  2015年   9篇
  2014年   12篇
  2013年   4篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2007年   1篇
  2005年   1篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1990年   3篇
  1985年   2篇
  1983年   1篇
排序方式: 共有105条查询结果,搜索用时 15 毫秒
31.
Investigation on landslide phenomenon is necessary for understanding and delineating the landslide prone and safer places for different land use practices. On this basis, a new model known as genetic algorithm for the rule set production was applied in order to assess its efficacy to obtain a better result and a more precise landslide susceptibility map in Klijanerestagh area of Iran. This study considered twelve landslide conditioning factors (LCF) like altitude, slope, aspect, plan curvature, profile curvature, topographic wetness index (TWI), distance from rivers, faults, and roads, land use/cover, and lithology. For modeling purpose, the Genetic Algorithm for the Rule Set Production (GARP) algorithm was applied in order to produce the landslide susceptibility map. Finally, to evaluate the efficacy of the GARP model, receiver operating characteristics curve as well as the Kappa index were employed. Based on these indices, the GARP model predicted the probability of future landslide incidences with the area under the receiver operating characteristics curve (AUC-ROC) values of 0.932, and 0.907 for training and validating datasets, respectively. In addition, Kappa values for the training and validating datasets were computed as 0.775, and 0.716, respectively. Thus, it can be concluded that the GARP algorithm can be a new but effective method for generating landslide susceptibility maps (LSMs). Furthermore, higher contribution of the lithology, distance from roads, and distance from faults was observed, while lower contribution was attributed to soil, profile curvature, and TWI factors. The introduced methodology in this paper can be suggested for other areas with similar topographical and hydrogeological characteristics for land use planning and reducing the landslide damages.  相似文献   
32.
A moderately various calcareous nannofossil assemblage of 44 species assigned to 24 genera is identified in samples collected from the Shahdar section and 18 genera and 43 species in Namazgah section. Testing of calcareous nannofossil has permitted recognition of few important coccolith events in stratigraphic interval occupied by the uppermost layers of Cretaceous in the Shahdar and Namazgah sections. These events are correlated to the CC24–CC26 of Sissingh (Geol Minjbouw 56: 37–65, 1977) in two sections. According to these biozones, the age of the studied sections in Shahdar and Namazgah is Early Maastrichtian–Late Maastrichtian. On the basis of paleoecological interpretation, the last layers related to the Cretaceous deposits in two sections were deposited in shallow marine environment in relatively low latitude, and the depth of the basin from the Cretaceous deposits toward Fajan Formation is minimized.  相似文献   
33.
The Gol-e-Zard Zn-Pb deposit is one of several sediment-hosted Zn-Pb deposits found in the central part of the Sanadaj-Sirjan Zone, known as the Isfahan-Malayer belt, western Iran. Mineralization occurs in Upper Triassic to Jurassic phyllites and meta-sandstones. Sphalerite and galena are the most abundant metallic ores, with minor chalcopyrite. Calcite and quartz are the main gangue minerals. Fissure filling, replacement textures and especially mineralized faults, suggest an epigenetic stage in the Gol-e-Zard deposit formation. Geochemical studies of mineralized rocks show high concentrations of Zn, Pb and Cu,(Zn and Pb 〉 10000 ppm and Cu average 3000 ppm). LREE enrichment(LREE〉HREE, La/Lu average 1.44) and positive Eu anomalies(Eu/Eu*〉1 average 1.67) indicate reducing conditions during the deposition of deposit. However, some samples do not display negative Ce anomalies, which indicate that localized oxidizing conditions are also present. This study indicates that the Gol-e-Zard deposit formed due to circulating hydrothermal fluids in a marine environment. A SEDEX-type genesis, which is defined by circulating hydrothermal fluids through sediments in a marine environment, and syngenetic precipitation of Zn and Pb sulphides, is suggested for the Gol-e-Zard deposit. Emplacement of some granitoid intrusions such as the Aligudarz granitoid intrusion remobilized mineralizing fluids and metamorphosed the Gol-e-Zard deposit.  相似文献   
34.
The Guri limestone Member of the Mishan Formation in the Zagros Basin consists of thick bedded limestone bearing benthic foraminifera and oyster shells. Seven species of Ostreidae and Gryphaeidae were identified as belonging to four genera (Crassostrea, Cubitostrea, Ostrea, and Hyotissa), i.e., Cubitostrea frondosa, Ostrea (Cubitostrea) dubertreti, Cubitostrea digitalina, Crassostrea gryphoides, Hyotissa virleti, Ostrea vesitata, and Ostrea plicatula. These fossils are reported for the first time from Iran. Miocene deposits in the studied area contain a rich benthic foraminiferal fauna dominated by Pseudotaberina, Meandropsina, Miogypsina, Flosculinella, Borelis, and other larger benthic foraminifera. We assign these sediments to a Burdigalian age based on Borelis melo curdicaBorelis melo melo Assemblage Zone. Paleoecological considerations also revealed that the beds were deposited in a near-shore non-agitated and shallow-water environment with moderate to low sedimentation rate. The studied oysters are located in one of more important paleogeographic settings in the world and very similar to many other Tethyan regions. The presence of these oysters suggests that the Zade Mahmud area located at margins of a sea way that connected the north and south of Zagros Basin during Burdigalian.  相似文献   
35.
Arsenic in the Muteh gold mining district, Isfahan, Iran   总被引:1,自引:1,他引:0  
Following the appearance of symptoms of arsenic toxicity in the inhabitants of villages in the Muteh gold mining region, central Iran, the concentration of this element in various parts of biogeochemical cycle is investigated. For this purpose, rock, groundwater, soil, plant, livestock hair and wool, and human hair samples are collected and analysed. Total arsenic content ranges from 23 to 2,500?mg/kg in rock samples, 7?C1,061???g/l in water, 12?C232?mg/kg in soil, 0.5?C16?mg/kg in plant samples, 4.10?C5.69?mg/kg in livestock hair and wool, and 0.64?C5.82?mg/kg in human hair. Arsenic concentration in various parts of biogeochemical cycle near the gold deposit in a metamorphic complex, and also close to the gold-processing plant, is very high and decreases exponentially with increasing distance from them. Arsenic concentration in water from a well close to the Muteh gold mine is above 1?mg/L. Arsenic in hair samples taken from local inhabitants is above the recommended levels, and the control samples in Shahre-Kord city. Arsenic concentration is higher in male population and correlates positively with age. It is suggested that arsenic resulting from the decomposition of ore mineral such as orpiment (As2S3), realgar (As2S2) and arsenopyrite (FeAsS) is responsible for polluting natural resources and the human intake via drinking water and the food chain. Gold mining and processing has undoubtedly enhanced the release of arsenic and intensified the observed adverse effects in Muteh area.  相似文献   
36.
Nutrients are important building blocks for healthy aquatic ecosystems and are generally nontoxic; but they can change with alteration in environmental parameters. The main objective of this study was to consider the seasonal variability of NO 3 , PO 4 3– and total suspended solids (TSS) concentrations in water. The study sites, stream crossings (L30, L15) and river (R), are located in the hyrcanian forests, district 1 of Darabkola forest. The sampling was conducted in winter and spring. Water samples were taken into plastic bottles, labeled, and carried out to the laboratory for NO 3 , PO 4 3– and TSS analysis. T-test results showed that there was a seasonal change in nutrient concentrations (p < 0.05) except for NO 3 concentration at L30. Also, there was no significant seasonal change in TSS concentrations at all stations. Pearson correlation analysis did not reveal the same trend. Further analysis showed that the effect of road age on water quality parameters was statistically significant for PO 4 3– in spring and winter. Atmospheric precipitation plays vital role in nutrient loss and increasing concentration of suspended sediment. To prevent soil erosion from activities and discharge of wastes in the vicinity of river and stream an effective management should be planned and enforced.  相似文献   
37.
38.
Qanat is an ancient underground structure to abstract groundwater without the need for external energy. A recognized world heritage, Qanat has enabled civilization in arid and semi-arid regions that lack perennial surface water resources. These important structures, however, have faced significant challenges in recent decades due to increasing anthropogenic pressures. This study uses remote sensing to investigate land-use changes and the loss of 15,983 Qanat shafts in the Mashhad plain, northeast of Iran, during the past six decades. This entails obtaining a rare aerial imagery from 1961, as well as recent satellite imagery, over a region with the highest density of Qanats in Iran, the birthplace of Qanat. Results showed that only 5.59% of the Qanat shafts in 1961 remained intact in 2021. The most prominent Qanat-impacting land-use changes were agriculture and urban areas, that accounted for 42.93 and 31.81% Qanat shaft destruction in the study area, respectively. This study also showed that groundwater table decline, demographic changes, and reduction in the appeal of working in the Qanat maintenance and construction industry among the new generation are existential threats to Qanats, and may result in the demise of these ancient structures in the future. Findings of this study can be used for urban planning in arid and semi-arid areas with the aim of protecting these historic water structures.  相似文献   
39.
The Khoy ophiolitic complex in Northwestern Iran is a part of the Tethyan ophiolite belt, and is divided into two sections: the Eastern ophiolite in Qeshlaq and Kalavanes (Jurassic–Cretaceous) and the Western ophiolite in Barajouk, Chuchak and Hessar (Late Cretaceous). Our chromitites can be clearly classified into two groups: high‐Al chromitites (Cr# = 0.38–0.44) from the Eastern ophiolite, and high‐Cr chromitites (Cr# = 0.54–0.72) from the Western ophiolite. The chromian spinels in high‐Al chromitite include primary mineral inclusions mainly as Na‐bearing diopside and pargasite with subordinate rutile and their formation was probably related to reaction between a MORB (mid‐ocean‐ridge basalt)‐like melt with depleted harzburgite, possibly in a back‐arc setting. Their host harzburgites contain clinopyroxene with higher contents of Al2O3, Na2O, Cr2O3, and TiO2 relative to Western harzburgites and are possibly residue after moderate partial melting (~15 %) whereas the Western harzburgite is residue after high partial melting (~25 %). The chromian spinel in the Western Khoy chromitites contains inclusions such as clinopyroxene, olivine and platinum group mineral‐bearing sulfides. These Western chromitites were possibly formed at two stages during arc growth and are divided into the moderately high‐Cr# chromitites (Barajouk and Hessar) and the high‐Cr# chromitites (Chuchak A and C). The former crystallized from island‐arc‐tholeiite (IAT) melts during reaction with the host depleted harzburgites, whereas the latter crystallized from boninitic melts (second stage melt) during reaction with highly depleted harzburgite in a supra‐subduction‐zone environment. Based on the mineral chemistry of chromian spinels, pyroxenes, and mineral inclusions, the chromitites and the host peridotites from the Eastern and Western Khoy ophiolites were formed in a back‐arc basin and arc‐related setting, respectively. The Khoy ophiolitic complex is a tectonic aggregate of the two different ophiolites formed in two different tectonic settings at different ages.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号